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Some constraints and solutions of the Kadomtsev-Petviashvili 
equation 

Tian Chout 
International Centre for Theoreticat Physics, Trieste, Italy 

Received 26 July 1993, in final form 27 May 1994 

Absiract We U u s m  the relations among the symmetry invariant gmup and constraint for 
a differential equation. Applied to Be Kadomwv-Petviashvili equation, some constraints and 
solutions are given. In particular, the equation associated with the symmetry U of t h e w  equation 
is introduced and discussed. 

1. Symmetry, invariant group and constraint 

We consider 

M = [ u ( t , x , y ,  ... )I  E P }  

and the differential equation 

F ( t , x ,  y ,  . . . U ,  ut, U,. U?, . . .) = 0 

which is written briefly as 

F ( t , n ,  y ,  ... U) = 0 or F ( u )  = 0. 

Suppose N is a set of the solutions of (l.l),  i.e. 

N = (U E M I F ( u )  = 01 

and G = {g] is a Lie group which acts on M: 

g : M + M  

u + t s = g o u  g E G .  

Dejnition 1.1. G is called an invariant group of (l.l),  if g o N c N for any g E G, that 
is, ts = g n U is a solution of U is a solution of (1.1) [1,2]. 

In particular, if G = (gcle E R )  is a one-parameter invariant group: 

g, ; U + i(a, E )  

go o u  = ts(u.0) = U 
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and P ( i )  = 0 is established for any E if U E N. Considering the Taylor expansion of F ( Z )  
for E ,  we have 

F ' ( u ) o u  = o  ( 1.2) 
where 

and F'(u) o a is the derivative of F ( u )  to the direction U ,  i.e, 

(1.3) 
d 

F ' ( u ) o a  = zF(UfEu)I,=O. 

F'(u) o U can also be considered as the action of the direction a on the function F and 
written as U o F. 

Defiition 1.2. u ( t , x ,  y , .  ..U, u z ,  u, ,ug. .. .) (E u( t ,x ,  y . .  . .) or U @ ) )  is called a 
symmetry of differential equation (Ll), if 

F'(u) 0 U = 0 
is established for any U E N. 

In particular, for the evolution equation 
U, = K ( t ,  X ,  y ,  .,.,U, U,, u~,.. .) 

equation (1.2) is reduced to 
ao 
a t  

ut = K'a or - = [k, U ]  

where ut is the total derivative of U to t and [K, U ]  = K'u - u'K [3,4]. Therefore, there 
is a corresponding symmetry to a one-parameter invariant group of a differential equation. 
Conversely, there is a corresponding one-parameter invariant group for a symmetry as well. 

Theorem 1.1.  If I? =U@.&) satisfies 

where U is a symmetry of (Ll), then 
g, : U  + I ? ( U , E )  

is a one-parameter invariant group of (1.1) [5] 

Definition 1.3. Solution U of the differential equation (1.1) is called group G invariant if 
U is invariant for the action of any g E G, i.e. g o  U = U, g E G. 

In particular, assume G = {gel& E R] is a one-parameter invariant group of (1.1) 
corresponding to the symmetry u(u)  = di/dr),o. 

Theorem 1.2. If g, is a one-parameter invariant group of (1.1) corresponding to the 
symmetry U ,  then solution U is g,-invariant if and only if U satisfies u(u) = 0 [5]. 

Therefore, to look for the g,-invariant solution, we only need to solve the equations: 

F ( u )  = 0 a(u)  = 0. (1.5) 
It is known [5] that these two equations in (1.5) are compatible and they can be reduced to a 
lower-dimensional partial differential equation or an ordinary equation. In [SI we discussed 
the 1 + 1 dimensional KdV equation. In this paper, we will discuss the 2 + 1 dimensional 
KP equation. 
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2. Constraints of the KP equation 

We consider the KP equation 

ut + U,,, + 6uu, - D-lu,, = 0 

(D-' = j d x )  or 

(ut + uIU + ~uu,), - uYy 0. 

As is known, the KP equation (2.1) has the following symmetries [6,4]: 

KO = uZ 

K3 = 5D 

K1 = uY K2 = D-'u,, - uxXx - ~ U U ,  = ut 

4 -2 u , ~ ,  - 4~~~~ - 8~,D-'u, - 1 6 ~ ~ , ,  . . . 
so = 3tu, - f 51 = 2tu, + yu, rz = 3tu,  + ~ y u ,  +xu,  + 2u, . . . 

and the Lax pair [7]: 

and we have 

Lemma 2.1. U = 
conjugate function of @ [7,8]. 

Proof. By using (2.2) and (2.3), we can check that y = 66 satisfies 

is a symmetry of the KP equation (2.1), where 4 is the complex 

YO + ~ x x x  + 6 ~ y . r  - D - ' ~ y y  = 0 

and then we have 

U, + uxrx + 6u0, + 6u,u - D-~u,, = 0. 

(i) If we take the symmetries KO. K I ,  Kz, K3, ro, 'cl, q, r3 or their linear combinations, 
the KP equation can be constrained to the KdV equation, Boussinesq equation and so on [PI. 
For example, by using U = SO - aK1 = 3tux - 1/2 - a i ,  (Q is an arbitrary constant), the 
KP equation is constrained to the KdV equation 

f r +  has -6fh = o  (2.4) 

where 

r = t  
3 ty  3 t3  

( = x + - + 7  
a a  

and 

u = f  ( x + - + - - , t  3: :: ) -- 2', 
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is a solution of the KP equation. 

to the Boussinesq equation 
By using the symmetry a = r, -aKZ = Ztu, +yu,-au,,  the KP equation is constrained 

ft + f i t !  + 6 f f t  - D-’fw = 0 (2.5) 

where 

y t  2 3  t=.X+-+- 
a 3aZ 

and 

y t  2 3  y t* 1 u = f  x+-+---,-y-- ( a 3aZ f?z) 6a 6 a Z + 6  

is a solution of the KP equation. 
(ii) We take the symmetry U = U, - (@4),. Since 

ux - (@4L = 0 

we have 

U = $4. 
Substituting U = $4 into the Lax pair (2.2) and (2.3) of the KP equation (2.1), we can 

obtain the group-invariant sotution corresponding to the symmetry ux - (@4L [7], that is, 
we need to solve the following equations 

Since (2.6), (2.7) can be reduced to 

and we have 

1 $A = (.. - +L.) 3 



Some constraine and solutions ofthe Kadomtsm-Pewiashvili equation 5577 

then (2.8) is reduced to 

U1 = -4u,,, - 12uu, i- 12(&&)x 
01 

Therefore, to look for the group-invariant solutions, we only need to solve the compatible 
equations (1.6) and (4.9), or the equations (1.6) and 

3u,,, + 6uu, + D-'U (2.10) 

Equation (2.10) is a 1 + 1 dimensional equation. In the next section, we expand the 
discussion to the general case and we call (2.10) an associate equation to symmetry ux of 
the KP equation. 

3. Associate equation to the symmetry U of the KP equation 

In the last section, we obtained a 1 + 1 dimensional equation (2.10) which is called an 
associate equation to the symmetry U, of the KP equation: 

Equation (3.1) can be understood as the integrable condition of the following equations: 

4y = Ai(+xz + U$) 
i.e. &y = #yx if and only if (3.1) is established. Suppose 

(3.2) 

(3.3) 

q = -  $5 

4 
then (3.3) is reduced to 

o-Iqy = + q2 + U) 

U = -Jr, - @2 - --D-'$ 

01 

i 
(3.4) A y' 

Substituting (3.4) into (3.3). we obtain the equation 
2i 2i 1 

qxi - 2 q 3 -  - J . D - ~ ~ ~ - - D - ~ ( ~ ~ ~ ~ + - D - ~ ~ ~ ~ = o  3 (3.5) J? A 
and call (3.5) the modified equation of (3.1). Since (3.5) is invariant when we change (@, y )  
to (-+, -y) and equation (5.1) is invariant when we change y to -y ,  then 

is a solution of equation (3.1) when U is a solution of equation (3.1). Tnerefore, we have 
the Backlund transformation for equation (3.1). 
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Theorem 3.1. If U is a solution of the equation (3.1), @ satisfies (3.2) and (3.3), then 

is a solution of the equation (5.1) as well. 
Since (3.2) 

we have: 

Corollary 3.1. If U is a solution of the equation (5.1), then 

is a solution of the equation (5.1) as well. 

Example 3.1. U = -$x*y-* is a solution of equation (3.1), according to corollary 3.1, 
we obtain the solution 

and then we have the solution 

and so on. 

KP equation @.I), corresponding to the covariant conserved y(yx = U ) .  Since 
In general, we take the symmetry U - (@$)x ,  where U is an arbitrary symmetry of the 

and (3.3), we have 

and we obtain 

(3.6) 

(3.7) 

(3.8) 
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To look for the group-invariant solutions corresponding to the symmetry U - (@$)x, we 
need to solve equations (3.6)-(3.8). Since (3.6), (3.7) can be reduced to 

then by using @xy = @yx,  we obtain the equation 

i.e 

3~x.r .x  + ~ Y U ,  -k D-'yyy (3.9) 

This is a 1 + 1 dimensional equation (we can assume that U (or y )  does not include ut 
since it can be replaced by D-]uYy  - U,, - 6uu, and t is considered as a parameter). To 
look for the group-invariant solution, we only need to solve the compatible equations (2.1) 
and (3.9), and we call equation (3.9) the associate equation to the symmetry U of the KP 
equation. 

Example 3.2. When U = u z ,  (3.9) is reduced to equation (3.1). 

Example 3.3. When U = uyr y = D-'u, and (3.9) is reduced to the equation 

3ulxy + 6u,D-'uy + D-2uyyy - 1 (D-2uyy)% = 0 

and (3.6) is reduced to 

(3.10) 

(3.11) 

Substituting 

into (3.11), we obtain the modified equation of (3.10): 

2i 2i 
(3.12) 

1 
@xy - 4 @ D - ' ( $ $ y ) +  3 D - 3 @ y y y  - -$D-z$yy - -D-2 (@$y)y  = O .  45 45 
Since (3.12) is invariant when we change (e, y) to (-$, - y ) ,  and (3.10) is invariant when 
we change y to - y ,  we obtain the Backlund transformation for the equation (3.10). 

Theorem 3.2. If U is a solution of the equation (3.10), @ satisfies equations (3.11) and 
(3.13), then 

is a solution of (3.10) as well. 
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Corollary 3.2. If U is a solution of the equation (3.10) then 

is a solution of (3.10) as well. 

Example 3.4. We take cr = 3tu, - $(y = 3tu - 4); (3.9) and (3.5) are reduced to 

3t  (3tu, - 1/2)2 
3uX,, + 6uu, + D-'u,, - - - (D-'u,)') = O  (3.13) 

t t(3tu - x / 2 )  + 3tu - x / 2  I 

and 

(3tu, - 4 - i&tD-'u,)$. 
1 '' = 2(3& - x / 2 )  

(3.14) 

Substituting 
i 

U = -@x - r/r2 - -D-'@ a y  
3 1 1  2i 2i x* 1 

into (3.14), we have 

(3.15) @zx - 2$ + - D- - - @ D -  $, - -D-'($@,) - - + - = 0. 
3 J? 8 3t  6s 

1 2i 2i x* 1 
3 yy 43 %f3 3f 6t 

When we change ($, y )  to (-$, - y ) ,  equation (3.5) is reduced to 

(3.16) 

Therefore, we could not obtain the auto-Backlund transformation for the equation (3.13). 
In this case, (3.16) is equivalent to 

(3tu, + & -i&tD-'u,)$ (3.17) 

1 / 1 ~ %  - 293 + - ~ - 1 9  - - -g~- l$ ,  - - D - I W $ ~ )  - - - - = 0. 

1 
" = 2(3tu - x / 2 )  

4, = &iic$xx + 
and the integrable condition of (3.18) and (3.19) is 

3r (D-'U,)')~ 
(3tu, - 1 / 2 y  

3u,,, + 6uu, + D-Iu, - - - r t(3tu - x / 2 )  + 3tu - x / 2  
3tu, + i  = 0. 

A ( 3 t u  - x / 2 )  

(3.18) 

(3.19) 

Therefore, we obtain: 

Theorem 3.3. If U is a solution of the equation (3.13), then 

or 

(3tu, - f - i&tD-'u 
1 

(3tu - x / 2 )  
; = U +  

is a solution of (3.19), where $ satisfies (3.3) and (3.14). 

These examples show the difference between the K-symmetries (examples 3.2 and 3.3) 
and the s-symmetries (example 3.4). We can compare with the conclusions in [12-141, and 
extend the discussion to the general cases. 



Some constraints and solutions of the Kadomtsev-Petviashvili equation 5581 

Acknowledgments 

The author would like to thank hofessor Abdus Salam and the International Atomic Energy 
Agency and UNESCO for hospitality at the International Centre for Theoretical Physics, 
Trieste. This work was also supported by the National Science Fund of People's Republic 
of China. 

References 

[I1 
121 
131 
141 

151 .. 
161 
171 

Olyer P J 1986 Applicarions $Lie Group to DiferentidEquaiom (Berlin: Springer) 
Bluman G W and Kumei S 1989 Symmebies and differential equations Appl. Mah. Sci. 81 (Berlin: Springer) 
Fuchssteiner B and F o b  A S 1981 Phyxica 4D 47-66 
Tian C I990 Soliton Theory and Its Application ed C H Gu (Zhejiang publishing house of science and 

Tian C 1992 Symmetries and group-invariant solutions of differential equations USTC Preprint 
Chen H H, Lee Y C and Lin J E 1983 Physico 9D 439-45 
Cheng Y and Li Y S 1991 Phys. Len. 1S7A 22r6 
Sidorenko I and Shamp W 1991 Inverse Problems 7 W M 3  
David D. Kamran N, Levi D and Wintemik P 1986 J. Mak. Phys. 27 1W-37 
Konopelchenko B and Strdmp W 1991 Inverse Problem 7 L17-24 
Tm C 1989 Chin. Ann. Math. 1OB 190-9 
Tm C and Zheng Y J 1990 Nonlinear Physics ed C H Gu, Y S Li and G Z TU (Berlin: Springer) pp 34.441 
Tm C and Zheng Y I 1990 J. Phys. A: Math. Gen 23 3867-77 
Tm C and Zheng Y I 1990 J. Mark Phys. 31 2150-4 

technology) 


